Search results for " 17B99"
showing 2 items of 2 documents
A note on the Schur multiplier of a nilpotent Lie algebra
2011
For a nilpotent Lie algebra $L$ of dimension $n$ and dim$(L^2)=m$, we find the upper bound dim$(M(L))\leq {1/2}(n+m-2)(n-m-1)+1$, where $M(L)$ denotes the Schur multiplier of $L$. In case $m=1$ the equality holds if and only if $L\cong H(1)\oplus A$, where $A$ is an abelian Lie algebra of dimension $n-3$ and H(1) is the Heisenberg algebra of dimension 3.
The Bianchi variety
2010
The totality Lie(V) of all Lie algebra structures on a vector space V over a field F is an algebraic variety over F on which the group GL(V) acts naturally. We give an explicit description of Lie(V) for dim V=3 which is based on the notion of compatibility of Lie algebra structures.